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where P& are real constants and ‘ps (2,) are continuous and satisfy the inequalities. 

qls (5,) sign 2& > 0 for t# # 0 (8 = i, 2,..., n) (31) 

Let the coefficients of this system and the elements of some basis {a,,} be related 

by expressions (8). We then draw the following conclusions on the basis of Theorem 4 

and Corollary 2 of Theorem 7 : 
1) The system under consideration is absolutely stable if and only if all the roots 

of secular equation (13) have negative real parts. 

2) let fulfillment of the above assumptions concerning the right sides of system 

(30) imply that det 11 ps rl[ # 0. The zero solution of this system is then unstable for any 

chosen functions (Ps (2,) satisfying inequalities (31) if and only if: (a) there exists at 
least one root of Eq. (13) with a positive real part, or (b) there exist roots of this equation 

with real parts equal to zero such that the number of groups of solutions corresponding 
to these roots is smaller than their multiplici~. 
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The results of a study of the stability of the equilibrium position of a nonautonomous 
Hamiltonian system with two degrees of freedom are presented. The parametric reso- 

nance domain for the libration points is determined to within the first power of the 
eccentricity. Formulas for computing the characteristic exponents are derived. The 
resonance values of p and e for which the libration points can be unstabie inside the 

stability domains are determined. 

1. Let us consider three material points which attract each other according to New- 
ton’s law. Let the points 8 and 1 of massesmiandmamove relative to their common 
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center of mass 0 along Keplerian ellipses of eccentricity e. The third body moves in 
the plane of the bodies s and J without affecting their motion. 

We know n J that the differential equations of motion of the three-body problem have 
a particular solution which corresponds to the libration points: the three bodies form an 

equilateral triangle which rotates about the common center of mass of the bodies. 

In the case of the circular problem (e = 0) fulfillment of the inequality 

27 IL (1 - p) < 1 

IJ = m2 I h + WA (0 < tc Q ‘Id 

ensures that the libration points are stable in the first approximation f1]. 

In f2] we showed that the triangular libration points are, in fact, stable for all values 

of p in the stability domain in the first approximation except for the two values 

I” Ez= 15-m 
30 

= 0.0135160..., P= 45-grm -0.0242938 . . . 

for which they are unstable ( *). 
The elliptic problem was investigated in 15-71. In [5. 61 an asymptotic method is 

used to analyze stability in the first approximation for small values of the eccentricity. 

In n] numerical calculations in the plane p e are used to obtain the domainsof stability 

in the first approximation for an arbitrary eccentricity (0 Q e < I). 
In the present paper we determine the parametric resonance domain to within the 

first power of the eccentricity, derive expressions for the characteristic exponents in 
terms of the coefficients of the characteristic equation, and specify the values of p and 

e for which the libration points can be unstable in the domains of stability in the first 

approximation in the case of the nonlinear problem. 

2. Let the origin qi = p3 = 0 be the equilibrium position of the system 

dq, _ aff dPi aH 
-z---3$ z-=-q- 0 ‘= i, 2) (2.i) 

HereH is a Hamiltonian of period 23~ in the independent variable t ; this Hamilton- 
ian is analytic in the neighborhood of the point Qi = pi = 0. 

Let the linearized system be stable and let all of its multipliers be distinct. We can 

then assume that the Hamiltonian has been reduced (e. g. see [8]) to the form 

H = r/2& (q1;” + Pa21 + ‘I2h2 (q2” + Pz2) + H, + & + *a - (2.2) 
Here + ihI, -/- i& are the characteristic exponents of the linearized system ; Hrn - 

is a homogeneous function of degree m in qf, pi and of the period 2n in t. 
Further, if the condition 

kA + k&z + 0 {mod 1) (2.3) 

is fulfilled for the integers kl and k2 satisfying the equation 1 kl 1 + 1 122 1 = 3 or 

I JEx I + I B I = 4, then there exists [9] an analytic canonical transform 2n -periodic 

in t which reduces the Hamiltonian to the form 

*) The treatment of the problem in paper c2] entails certain results of 131. The proof 
of instability in the latter paper contains certain inaccuracies which were subsequently 

rectified in 143. 
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H = hlrl + bra + ~z~7i~ i- c~,v~ + C02rz2 f 0 ((5 -t r2w (2.4) 

(2Q = Qf2 + Pr”) 

The coefficients cij in (2.4) do not depend on f. 
If the quadratic form 

C20'12 + c11r1r2 + cozr2" 

is of fixed sign in the domain r, > 0, ra > 0, then the equilibrium position is formally 

stable [S, 10, 111. Formal stability implies that Liapunov instability is not manifested 
provided functions H,,, up to an arbitrarily large m are retained in expansion (2.2) ; 
moreover, if there are trajectories emerging from the origin, then motion along these 

trajectories is very slow. 

Stability in the case where condition (2.3) is not fulfilled for nonnegative kr and ks 

is investigated in [4]. 

If condition (2.3) is violated for at least one pair of nonnegative integers /& and k2 
whose sum is equal to three, then the Hamiltonian for suitably chosen variables qi, pi 

become; 
Ii = ak,, kt F1 "zktr~krsin (k,cp, + kgpJ + 0 ((rl + r#) (2.5) 

where 
q, = l/Zisincp,, pi = Jq cos ‘pi (i = 1, 2) 

The equilibrium position is unstable for ah,, k, + 0 . 

If condition (2.3) is not fulfilled for a pair of nonnegative integers kland k2 whose 

sum is equal to three, the Hamiltonian can be transformed into 

H = c~rrs $ crt%rs f COZ~S~ $_ bt,, kz r!k1r?k2 sin (FE1(pl -I- Icz%) i- H’ (% cut, t) 

(H’ = 0 ((r1 + r2)“)) (2. ‘5) 

Fulfillment of the inequality 

1 bk,, kz 1 JEFkl k?” > [ c&,2 + c&& + qAa 1 (2.7) 

means that the equilibrium position is unstable ( *) ; it is formally stable if the function 

H - H’ is of fixed sign in the neighborhood of the equilibrium position. 

3. let us investigate the motion of the body P with the aid of Nechvile coordinates 
using the true anomaly v as the independent variable. The origin coincides with the 

center of mass 0 ; the Ox-axis is directed towards the body J. We choose our unit of 
length in such a way that the distance between the bodies s and J is equal to unity. 
The differential equations of motion of the body P are then of the form n] 

d=X -- 2 dy 
1 ap 

dv= -= i+ecosv as dv -3 
1 an 

lfecosv ay (3.4) 

where 
Q.=V+W, II&+$+$ 

SP2 = (x + p)” + Y2, JP2 = (x + p - 1)2 + y2 

It is easy to verify the fact that system (3.1) corresponds to motion with the Hamilton- 

ian H = + (Px2 + Pv2) + PXY - Pv” + 2 (I”;;,“,, q (x2 -!- Y") - I+ ,‘,,, y w 
(3.2) 

*) We assume that the quantity klf*ki in inequality (2.7) is equal to unity for ki = 0 . 
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Here Psr Pa, are the generalized momenta corresponding to the coordinates 2 and y. 
The solution corresponding to the triangular libration point for the system with Hamil- 

tonian (3.2) is the eq~libr~um position 

x0 = r/a (1 - %I, Yo = % 0, Pz, = - ‘12 If% pu, = % (1 - w (.3.3) 

Let us substitute variables as follows: 

z = x0 + 41, Y =Yo+qz, Px ” Px, -t PI* P, = P, -I- PB 
Solution (3.3) then corresponds to the eq~librium position qs = ~z = pr = pz = 0. 

Expanding the Hamiltonian in powers of qt, pt and discarding the terms independent of 
qt and pi, we obtain 

H= Hz -j-H, +Hd +-.a (3.4) 
where 

ffs = 16 (2 +‘, co9 y) [ - 7 (1 - 2p) q1* + 31/sq12qa+33 cj - w qrqa2+3V~qsa1 

H4 - 
1 -- [37q,4 f 100 y’g( i - 2~) qlsqs - 246qCq2 - 

128 (I+- e cos Y) 

- 180 -V-3(1 - 2~) wz3 - 3q,41 

4, The elliptic problem entails the possibility of parametric resonance, The bound- 
aries of the instability domain for small eccentricities can be found by asymptotic me- 

thods. According to 181, parametric resonance occurs in the neighborhood of those values 
of p for which the quantities hI and h, for e = 0 satisfy the relations 

Fig. 1 

h, = ‘IzN, h, = VZN, h, -+- h, = N (4.1) 

where N is an integer. From c2] we infer that 

h, = or, li, = - 0s for e = 0. Here ox, 0% are 
the real positive roots of the equation 

w4 - 02 + 27/4p (1 - u) = 0 (4.2) 

Figure 1 shows or and oq as functions of p. Sim- 

ple analysis shows that the only relation of (4.1) 
which is fulfilfed in the stability domain of the 
circular problem is 0% = ‘iZ. Here 

P = ii6 (3 - 21/2j = 0.0285954... 

Computations by the averaging method show 
that the boundaries of the instability domain in the 
neighborhood of this value of p to within the first 

power of the eccentricity are of the form 

1~ = 0.0285954... rfc e 0.0594720... (4.3) 

The stability and instability domains of the linearized problem for an arbitrary eccen- 
tricity e can be obtained by numerical calculation g]. The stability domains of the 
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linearized problem in the plane pc appear as the area indicated by grid lines in Fig. 2. 

The libration points lying outside these domaIns are unstable ; the necessary conditions 
of stability are fulfilled for values of ue lying inside them. 

6. It is possible for the motion to be un- 
stable in the domains of the necessary stabi- 

0.8 

0.6 

lity conditions for values of the parameters 
p, e which satisfy resonance relations (2.3) 

for nonnegative integers kr, ks . To find the 

0.2 

# 
a. L7t 0. 02 a. 03 0. ff4 /I 

Fig. 2 

resonance values of the parameters we first obtain expressions for the quantities h,, 1, 
in terms of the coefficients of the characteristic equation 

p” - a# + asp” - a,p + i = 0 

The coefficient a, is equal to the trace of the fundamental matrix of the linearized 

system computed for v = 2n ; a,is equal to the sum of all its principal second-order 
minors. In the plane of coefficients at, a2 the domain of stability of the linearized sys- 
tem is defined by the system of inequalities yJ2] 

- 2 < as < 6, 4 (a, - 2) < aSI < ‘14 (as + 2) a 

The roots of the characteristic equation in this domain can be written as 

pl = eis=L, pz = @x5*, ps = e-ia*h, p, = e-isxh2 

It is easy to verify that 

ar = 2 (cos 2nh, f co9 2&), a2 = 2 + 4cos 25& CO9 22% 

Hence, cos 2nli, and cos 2nlr, satisfy the equation 

2.2 -l/s al2 + l/a (az - 2) = 0 (5-i) 

We cannot determine h, and I,, unambiguously from this equation. Let us consider the 
limiting case of the circular problem in order to fiid the single-valued expressions for 

h, and &. For e = 0 the roots of Eq. (5.1) are 

21,s = l/s (cos 2x0~ + co9 2noz * 1 co9 2noI - co9 2nwz I) 

Making use of (4.2). we can readily verify the fact that cos 2nol > cos 2noz. Hence, 

liI = (2n)-l Arc cos I~, h, = (2n)-l Arc cos % 

Further, recalling that 1 > o1 > l/s VT> oa> 0, we obtain 
li, = 1 - (2n)‘l arc co9 a, for all oI and 01 

- (25r)‘l arcccsz2 for 0 < 02 < ‘1% 

?a = 

- 1 + (2lc)-1 arc co9 22 for ‘/a < Oz < ‘/a ,‘Z 
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We have thus eliminated the ambiguity in the determination of the quantities h1 and 
& and can compute them from the formulas 

h1= 1 - (2rs)-l arc COB 1/h (a~ + A) for g >O 

ha= 
- (211)-l arc cos l/d (a1 - A) for 0 <p <1/.s (3 - 2 I/z) 

- i + (2x)-l arc cos l/b (a1 - A) for p >,‘/a (3 - 2 1/2-) 
(5.2) 

A = (a11 - 4a, + 8) ‘I. 

To find the resonance values of the parameters we must compute the fundamental 

matrix for Y = 2n for fixed p and e from the domain of the necessary conditions of 
stability, find the coefficients a 1, a, of the characteristic equation, and then compute 

A1 and & from formulas (5.2). We carried out these calculations by computer. The 
curves (see Fig. 1) on which the resonance relations are fulfilled are shown inside the 

stability domains in the plane pe. For e = 0 these curves are perpendicular to the Op - 

axis and emerge from points defined by the following data: 

p 0.0087... 0.0135... 0.0148... 0.0212... 0.0242.e. 
4hz = - 1 11+ 3hz = 0 3ka=--1 I1 + hJ = ‘/a Al + 2hz = 0 

p 0.0312... 0.0353... 0.0353... 0.0378... 0.0380. . . 
351+hz=2 2hr+hz=i h1+3ka=-i 4h1= 3 3hs = - 2 

For values of pe belonging to the resonance curves we can have either instability or 
formal stability. Formal stability is the only possibility outside the resonance curves. 

Resolution of the latter questions requires calculations based on the results of [4.10,11]. 
For the Sun-Jupiter and Earth-Moon systems we have p = 0.000953..., e = 0.048253... 

and 1-1 = 0.012116 . . . . e = 0.054900 . . . . , respectively. The points with these parameter 
values are marked + and l in Fig. 2. They do not fall on the resonance curves. 

The author is grateful to V. A. Sarychev for his interest in the present study and to 

A. P. Alekseenko for his assistance in carrying out the numerical calculations. 

BIBLIOGRAPHY 

1. Duboshin, G. N., Celestial Mechanics. Analytical and Qualitative Methods. 

Moscow, “Nat&a”. 1964. 

2. Markeev, A. P., On the stability of the triangular libration points in the cir- 

cular bounded three-body problem. PMM Vol. 33, Ng 1. 1969. 

3. Markeev. A. P., Stability of a canonical system with two degrees of freedom 
in the presence of resonance. PMM Vol. 32, N14, 1968. 

4. Markeev. A. P., On the stability of a nonautonomous Hamiltonian system with 
two dcgr?es of freedom. PMM Vol. 33, Np3, 1969. 

5. Grebenikov, E. A., On the stability of the Lagrangian triangular solutions of 
the elliptic restricted three-body problem. Astron. Zhurnal Vol. 41, Ng3.1964. 

6. Luk’ianov, L. G., On the stability in the first approximation of the triangular 
Lagrangian solutions of the elliptic restricted three-body problem. Biull. 
Inst. Teor. Astronomii Akad Nauk SSSR Vol. 11, plO(133), 1969. 

7. Danby, J. M. A., Stability of the Triangular Points in the Elliptic Restricted 
Problem of Three Bodies. Astronom. J., Vol. 69, N2, 1964. 

B. Moser. J., New Aspects in the Theory of Stability of Hamiltonian Systems. 
Comm. Pure Appl. Math., Vol. 11, l+l, 1958. 



Stability of triangular libration points in a three-body problem 221 

9. Birkhoff, J. D., Dynamic Systems. (Russian translation), Moscow-Leningrad, 
Gostekhteoretizdat ; 1941. 

10. Glimm, J., Formal Stability of Hamiltonian Systems. Comm. Pure Appl. Math., 
Vol17, Ng4, 1964. 

11. Briuno, A.D., On the formal stability of Hamiltonian systems. Mat. Zametki 
Vol.1, Np3, 1967. 

12. Liapunov, A. M., On the Stability of Motion in a Particular Case of the Three- 
Body Problem. In: Collected Works, Vol. 1, Moscow-Leningrad, Izd. Akad. 
Nauk SSSR. 1956. 

Translated by A.Y. 

AN OPTIMAL PROBLEM OF SATELLITE GUIDANCE 

BY MEANS OF A GYROSCOPE 
PMM Vol. 34, Np2, 1970. pp. 233-240 

V. S. MILEVA 

(Received d~~!%xer 2, 1969) 

The use of gyroscopes for attitude cantrol and stabilization of space vehicles in the case 
of large angles is considered. 

The simplest formulation of this nonlinear problem is investigated. An artificial earth 
satellite is equipped with a balanced two-axis gyro in a gimbal mount which acts as its 

final control element. The center of inertia of the gyro coincides with the center of 

inertia of the satellite body, and the axis of the outer gimbal (output axis) is parallel to 

one of the principal axes of inertia of the vehicle, It is assumed that the system is not 
acted on by external moments, so that its moment of momentum vector remains constant. 

After stabilization of the angular position of the satellite on its orbit. i. e. after elimi- 

nation of the initial angular velocities of the system, the entire moment of momentum 

is borne by the gyro wheel. The system can be rotated by altering the position of the 
gyro wheel axis (spin axis) ; the controls are the moments M, and Ma acting on the 
gimbal axes. The angles of rotation a and B of the gimbals are called the “control 
angles”. 

Although the results obtained are largely qualitative in character, they can be used 
in conjunction with the iteration method to construct a more exact solution. 

One of the two controls in the control mode just described, namely fi , is varied relay 
fashion. The angle a, i. e. the rotation of the outer gimbal between the initial and final 

rapid rotations, is varied periodically and depends on the angle of nutation fi and on the 
inertial characteristic of the system. 

During guidance the z -axis describes looped ( n < 0) or wavy (n> 0) curves on a 

fixed unit sphere ; these curves are bounded by two parallels for which sin 6 = f n. 

The self-intersection points of the loops or the inflection points of the wavy curves cor- 
respond to 6 = 6,. 

Let the initial position of the satellite body be known and let the purpose of control 
be to achieve a certain attitude change, i. e. let the final position of the vehicle in 
space be specified. As the spin axis rotates in the satellite body and in inertial space, 
the satellite body acquires an angular velocity in accordance with the law of conserva- 


